Đáp án:
• Tìm A và B sao cho
• \( \frac{1}{x^2 - 4x + 3} = \frac{1}{(x - 1)(x - 3)} = \frac{A}{x - 1} + \frac{B}{x - 3} \)
\( =\frac{(A + B)x - 3A - B}{(x - 1)(x - 3)} \)
\( \Leftrightarrow \) \(\begin{cases}
A + B = 0 \\
-3A - B = 1
\end{cases}
\Leftrightarrow
\begin{cases}
A = -\frac{1}{2} \\
B = \frac{1}{2}
\end{cases}
\)
\( \int \frac{1}{x^2 - 4x + 3} \, dx = -\frac{1}{2} \int \frac{1}{x - 1} \, dx + \frac{1}{2} \int \frac{1}{x - 3} \, dx \)
\(= \frac{1}{2} \left( \ln|x - 3| - \ln|x - 1| \right) = \frac{1}{2} \ln \left| \frac{x - 3}{x - 1} \right| + C\)