Đáp án:
• Đặt \( \begin{cases}
u = 1 + \ln(x+1) \\
dv = \frac{1}{x^2} \, dx
\end{cases} \quad \Rightarrow \quad
\begin{cases}
du = \frac{1}{x+1} \, dx \\
v = -\frac{1}{x}
\end{cases} \)
• \( I = -\frac{1}{x} (1 + \ln(x+1)) + \int \frac{1}{x(x+1)} \, dx \)
\( = -\frac{1}{2} (1 + \ln(x+1)) + \int \left( \frac{1}{x} - \frac{1}{x+1} \right) \, dx \)
\( = -\frac{1}{2} (1 + \ln(x+1)) + \ln \left| \frac{x}{x+1} \right| + C \)