Đáp án:
• Đặt \( \begin{cases}
u = \ln x \\
dv = \frac{x^2 - 1}{x^2} \, dx = \left(1 - \frac{1}{x^2}\right) \, dx
\end{cases} \quad \Rightarrow \quad
\begin{cases}
du = \frac{1}{x} \, dx \\
v = x + \frac{1}{x}
\end{cases} \)
• \( I = \left(x + \frac{1}{x}\right) \ln x - \int \left(x + \frac{1}{x}\right) \frac{1}{x} \, dx \)
\(= \left(x + \frac{1}{x}\right) \ln x - \int \left(1 + \frac{1}{x^2}\right) \, dx \)
\(= \left(x + \frac{1}{x}\right) \ln x - \left(x - \frac{1}{x}\right) + C\)