Đáp án:
• Đặt \( \begin{cases}
u = x \\
dv = (1 + \sin 2x) \, dx
\end{cases} \quad \Rightarrow \quad
\begin{cases}
du = dx \\
v = x - \frac{1}{2} \cos 2x
\end{cases} \)
• \( I = x \left(x - \frac{1}{2} \sin 2x \right) - \int \left(x - \frac{1}{2} \cos 2x \right) \, dx \)
\(= x^2 - \frac{1}{2} x \sin 2x - \frac{x^2}{2} + \frac{1}{4} \sin 2x + C \)
\(= \frac{x^2}{2} - \frac{x}{2} \sin 2x + \frac{1}{4} \sin 2x + C\)