Đáp án:
• \( I = \int x \frac{(1 - \cos 2x)}{2} \, dx \)
• Đặt \( \begin{cases}
u = \frac{x}{2} \\
dv = (1 - \cos 2x) \, dx
\end{cases} \quad \Rightarrow \quad
\begin{cases}
du = \frac{1}{2} \, dx \\
v = x - \frac{1}{2} \sin 2x
\end{cases} \)
• \( I = \frac{x}{2} \left(x - \frac{1}{2} \sin 2x \right) - \frac{1}{2} \int \left(x - \frac{1}{2} \sin 2x \right) \, dx \)
\(= \frac{x^2}{2} - \frac{x}{4} \sin 2x - \frac{x}{2}+ \frac{1}{4} \sin 2x + C \)