Lời giải
Đặt \( t = a - x \Rightarrow dt = -dx \)
\( \begin{cases}
x = 0 \Rightarrow t = a\\
x = a \Rightarrow t = 0
\end{cases} \)
\( I = \int_0^a \frac{1}{1 + f(x)} \, dx = - \int_a^0 \frac{1}{1 + f(a - t)} \, dt = \int_0^1 \frac{1}{1 + f(a - x)} \, dx \)
\( = \int_0^a \frac{1}{1 + \frac{1}{f(x)}} \, dx = \int_0^a \frac{f(x)}{1 + f(x) } \, dx = \int_0^a \frac{f(x) + 1 - 1}{1 + f(x)} \, dx\)
\( = \int_0^a \, dx - \int_0^a \frac{1}{1 + f(x)} \, dx\)
\( \Rightarrow 2I = \int_0^a \, dx \Rightarrow I = \frac{a}{2} \)
\(\Rightarrow\) Vậy chọn đáp án \(\boxed{\text{A}} \)