Đáp án

Bài tập: Cho hàm số \(y = f(x)\) liên tục trên \(\mathbb{R}\) thõa mãn 
\( \int_0^{\frac{\pi}{4}} f(\tan x) \, dx = 4, \quad \int_0^1 \frac{x^2 f(x)}{1 + x^2} \, dx = 2\)  Tính \(I = \int_0^1 f(x) \, dx \)
A. \(I = 6\quad\) B. \(I = 2\quad\) C. \(I = 3\quad\) D. \(I = 1\)

Lời giải

• Đặt \(t = \tan x \Rightarrow dt = (1 + \tan^2 x) \, dx \)
                            \(\Rightarrow dx = \frac{1}{1 + t^2} \, dt\)  

\(\begin{cases}
x = 0 \Rightarrow t = 0\\
x = {\frac{\pi}{4}} \Rightarrow t = 1
\end{cases}\)

\( 4= \int_0^{\frac{\pi}{4}} f(\tan x) \, dx = \int_0^1 \frac{f(t)}{1 + t^2} \, dt\)

\(2 = \int_0^1 \frac{x^2 f(x)}{1 + x^2} \, dx = \int_0^1 \frac{(x^2 + 1 - 1) f(x)}{1 + x^2} \, dx\)

   \( = \int_0^1 f(x) \, dx - \int_0^1 \frac{f(x)}{1 + x^2} \, dx = I - 4 \)

\(\Rightarrow \quad I = 6\)

\(\Rightarrow\) Vậy chọn đáp án \(\boxed{\text{A}} \)