Lời giải
\( \begin{cases}
u = \ln(x + \sqrt{x^2 + 1}) \\
dv = dx
\end{cases}
\Rightarrow
\begin{cases}
du = \frac{1}{\sqrt{x^2 + 1}} \, dx \\
v = x
\end{cases}\)
\( I = x \ln(x + \sqrt{x^2 + 1}) \Bigg|_0^1 - \int_0^1 \frac{2x}{2\sqrt{x^2 + 1}} \, dx \)
\( = x \ln(x + \sqrt{x^2 + 1}) \Big|_0^1 - \sqrt{x^2 + 1} \Big|_0^1 \)
\( = \ln(1 + \sqrt{2}) - (\sqrt{2} - 1) \)
\( = 1 + \ln(1 + \sqrt{2}) - \sqrt{2} \)