Lời giải
Đặt \( \begin{cases}
u = \cos(\ln x) \\
dv = dx
\end{cases}
\Rightarrow
\begin{cases}
du = -\frac{1}{x} \sin(\ln x) \, dx \\
v = x
\end{cases}\)
\( I = x \cos(\ln x) \Bigg|_1^{e^{\pi}} + \int_1^{e^{\pi}} \sin(\ln x) \, dx \)
Đặt \(
\begin{cases}
u = \sin(\ln x) \\
dv = dx
\end{cases}
\Rightarrow
\begin{cases}
du = \frac{1}{x} \cos(\ln x) \, dx \\
v = x
\end{cases}\)
\( I = x \cos(\ln x) \Bigg|_1^{e^{\pi}} + x \sin(\ln x) \Bigg|_1^{e^{\pi}} - \int_1^{e^{\pi}} \cos(\ln x) \, dx \)
\( \Rightarrow I = \frac{1}{2}(x (\cos(\ln x) + \sin(\ln x)) \Bigg|_1^{e^{\pi}} \)
\( = -\frac{1}{2}(1 + e^{\pi}) \)