Lời giải
\( f'(x) = -e^x f^2(x)\Leftrightarrow \frac{f'(x)}{f^2(x)} = -e^x \)
\(\Rightarrow \int \frac{f'(x)}{f^2(x)} \, dx = \int -e^x \, dx \Rightarrow -\frac{1}{f(x)} = -e^x + C \)
\( \Leftrightarrow f(x) = \frac{1}{e^x + C}. \)
\( f(0) = \frac{1}{2} \Leftrightarrow \frac{1}{1 + C} = \frac{1}{2} \Rightarrow C = 1\)
\( f(x) = \frac{1}{e^x + 1} \Rightarrow f(\ln 2) = \frac{1}{3} \Rightarrow \boxed{C} \)