Đáp án:
\( \frac{f'(x)}{f(x)} = \frac{1}{\sqrt{3x+1}} \implies \int \frac{f'(x)}{f(x)} \, dx = \int \frac{1}{\sqrt{3x+1}} \, dx. \)
\(= \frac{1}{3} \int 3(3x+1)^{-\frac{1}{2}} \, dx = \frac{2}{3} \sqrt{3x+1} + C.\)
\( \Rightarrow \ln(f(x)) = \frac{2}{3} \sqrt{3x+1} + C. \)
\( x = 1 \implies \frac{4}{3} + C = 0 \implies C = -\frac{4}{3} \)
\(\Rightarrow \ln(f(x)) = \frac{2}{3} \sqrt{3x+1} - \frac{4}{3}. \)
\( \Rightarrow f(x) = e^{\frac{2}{3} \sqrt{3x+1} - \frac{4}{3}}. \)
\(\Rightarrow f(5) \approx 3.79366 \Rightarrow \boxed{C} \)