Đáp án:
\( 9 f''(x) + [f'(x) - x]^2 = 9\)
\(\Rightarrow 9 f''(x) = -[f'(x) - x]^2. \)
\( \int \frac{f''(x) - 1}{[f'(x) - x]^2} = -\frac{1}{9} \Rightarrow \int \frac{f''(x) - 1}{[f'(x) - x]^2} \, dx = -\frac{1}{9} x + C. \)
\(\Rightarrow - \frac{1}{f'(x) - x} = -\frac{1}{9} x + C \)
- \( f'(0) = 9 \implies C = -\frac{1}{9} \)
\( \frac{1}{f'(x) - x} = \frac{1}{9} (x + 1) \implies f'(x) = \frac{9}{x + 1} + x. \)
\( f(1) - f(0) = \int_0^1 f'(x) \, dx = \int_0^1 \left( x + \frac{9}{x+1} \right) \, dx. \)
\( = \frac{x^2}{2} + 9 \ln(x+1) \big|_0^1 = \frac{1}{2} + 9 \ln 2 \Rightarrow \boxed{C} \)