Đáp án:
\( f'(x) = (2x + 3)e^{-f(x)} \quad \Leftrightarrow \quad f'(x) \cdot e^{f(x)} = 2x + 3 \).
Gợi ý: \( \int f'(x) e^{f(x)} \, dx = e^{f(x)} + C \)
\( \Rightarrow \int f'(x) e^{f(x)} \, dx = x^2 + 3x + C \).
\( \Rightarrow e^{f(x)} = x^2 + 3x + C \).
\(\Rightarrow f(0) = \ln 2 \Leftrightarrow C = 2 \).
\( \Rightarrow e^{f(x)} = x^2 + 3x + 2 \quad \Rightarrow \quad f(x) = \ln(x^2 + 3x + 2) \).
\( \int_{1}^{2} f(x) \, dx = \int_{1}^{2} \ln(x^2 + 3x + 2) \, dx = \int_{0}^{2} f(x) \, dx = -2 + 6 \ln 2 \Rightarrow \boxed{\text{ B}} \).