Đáp án:
\( (f(x))^3 + f(x) = x \Rightarrow f'(x)(f(x))^3 + f'(x)f(x) = x f'(x) \)
\( \Rightarrow \int_0^2 f'(x)(f(x))^3 \, dx + \int_0^2 f'(x)f(x) \, dx = \int_0^2 x f'(x) \, dx \)
\( \Rightarrow \frac{(f(x))^4}{4} \big|_0^2 + \frac{(f(x))^2}{2} \Big|_0^2 = \int_0^2 x f'(x) \, dx \)
\( (f(0))^3 + f(0) = 0 \Rightarrow f(0)(1 + (f(0))^2) = 0 \Rightarrow f(0) = 0 \)
\( (f(2))^3 + f(2) - 2 = 0 \Rightarrow f(2) = 1 \)
\(\Rightarrow \int_0^2 x f'(x) \, dx = \frac{1}{4} + \frac{1}{2} = \frac{3}{4} \)
Đặt: \( \begin{cases}
u = x \\
dv = f'(x) \, dx
\end{cases}
\Rightarrow
\begin{cases}
du = dx \\
v = f(x)
\end{cases}\)
\( \frac{3}{4} = \int_0^2 x f'(x) \, dx = x f(x) \Big|_0^2 - \int_0^2 f(x) \, dx = 2 - \int_0^2 f(x) \, dx\)
\(\Rightarrow \int_0^2 f(x) \, dx = 2 - \frac{3}{4} = \frac{5}{4} \quad \Rightarrow \boxed{A}\)