Đáp án:
\( f(x^5 + 4x + 3) = 2x + 1 \)
\( \Rightarrow (5x^4 + 4)f'(x^5 + 4x + 3) = (5x^4 + 4)(2x + 1) \)
+ \( x^5 + 4x + 3 = -2 \Rightarrow x^5 + 4x + 5 = 0 \quad \text{(chọn \( x = -1 \))} \).
+ \( x^5 + 4x + 3 = 8 \Rightarrow x^5 + 4x - 5 = 0 \quad \text{(chọn \( x = 1 \))} \).
\( \int_{-1}^1 (5x^4 + 4) f(x^5 + 4x + 3) \, dx = \int_{-1}^1 (5x^4 + 4)(2x + 1) \, dx \)
\( = \int_{-2}^8 f(u) \, du = \int_{-1}^1 (5x^4 + 4)(2x + 1) \, dx = 10 \Rightarrow \boxed{B} \)