Đáp án:
\(\int_{-1}^1 f(1 + 2x) \, dx + \int_{-1}^1 f(1 - 2x) \, dx = \int_{-1}^1 \frac{x^2}{1 + x^2} \, dx\)
\(\Rightarrow \frac{1}{2} \int_{-1}^1 f(1 + 2x) \, d(1 + 2x) - \frac{1}{2} \int_{-1}^1 f(1 - 2x) \, d(1 - 2x) = \int_{-1}^1 \frac{x^2}{1 + x^2} \, dx\)
\(\Rightarrow \frac{1}{2} \int_{-1}^3 f(t) \, dt - \frac{1}{2} \int_{3}^{-1} f(t) \, dt = \int_{-1}^1 \frac{x^2}{1 + x^2} \, dx\)
\(\Rightarrow \int_{-1}^3 f(t) \, dt = \int_{-1}^1 \frac{x^2}{1 + x^2} \, dx = 0.4292036732 \, \rightarrow \boxed{A}.\)