Lời giải
\( x \in [0, 3] : \quad e^{x-2} = 3 - x \quad \iff x = 2 \quad \) ( đơn điệu)
\( S = \int_{0}^{3} \left| e^{x-2} - (3 - x) \right| dx \)
\(= \left| \int_{0}^{2} ( e^{x-2} - (3 - x) ) dx \right| + \left| \int_{2}^{3} (e^{x-2} -(3 - x)) dx\right| \)
\( = \frac{3}{2} + e + \frac{1}{e^2}\)
Bấm : \( \int_{0}^{3} \left| e^{x-2} - (3 - x) \right| dx = \text{(Đợi 105s)} \approx 4.353617 \)
Bấm : \( \left| \int_{0}^{2}( e^{x-2} - (3 - x)) dx\right| + \left| \int_{2}^{3} (e^{x-2} -(3 - x)) dx\right| \quad \text{(Đợi 10'')} \quad \approx 4.353617\)
\(\Rightarrow\) Vậy chọn đáp án \(\boxed{\text{C}} \)