Lời giải
\( f'(x) = -2x + 4 \)
• \( \Delta_1: y = f'(0)(x - 0) + f(0)\)
\( y = 4x - 3 \)
• \( \Delta_2: y = f'(3)(x - 3) + f(3) \Rightarrow y = -2(x - 3) + 0 \)
\(y = -2x + 6 \)
* \(\Delta_1 \cap \Delta_2: 4x - 3 = -2x + 6 \iff x = \frac{3}{2}\)
\( S = S_1 + S_2 = \int_{0}^{\frac{3}{2}} \left[(4x - 3) - (-x^2 + 4x - 3)\right] \, dx + \int_{\frac{3}{2}}^{3} \left[(-2x + 6) - (-x^2 + 4x - 3)\right] \, dx \)
\( = \int_{0}^{\frac{3}{2}} x^2 \, dx + \int_{\frac{3}{2}}^{3} \left[x^2 - 6x + 9\right] \, dx \)
\( = \frac{x^3}{3}\Big|_{0}^{\frac{3}{2}} + \left(\frac{x^3}{3} - 3x^2 + 9x \right) \Big|_{\frac{3}{2}}^{3} \)
\( = \frac{9}{4} \)
\(\Rightarrow\) Vậy chọn đáp án \(\boxed{\text{B}} \)