Đáp án

Bài tập: Cho hình phẳng \( D \) giới hạn bởi đường cong \( y = \sqrt{2 + \sin x} \), trục hoành và các đường thẳng \( x = 0 \), \( x = \pi \).  Khối tròn xoay được tạo thành khi quay \( D \) quanh trục hoành có thể tích \( V \) bằng
\( A. V = 2(1 + \pi) \)
\( B. V = 2\pi (1 + \pi) \)
\( C. V = 2\pi^2 \)
\( D. V = 2\pi \)

Lời giải

\( V = \pi \int_{0}^{\pi} \left(2 + \sin x\right) \, dx = \pi (2x - \cos x ) \bigg|_{0}^{\pi} \)

     \(  = \pi \left[ 2\pi + 1 + 1 \right] = 2\pi(1 + \pi) \)

\(\Rightarrow\) Vậy chọn đáp án \(\boxed{\text{B}} \)