Lời giải
* \( x^2 = \frac{8}{x} \iff x^3 = 8 \iff x = 2 \)
* \( \frac{x^2}{8} = \frac{8}{x} \iff x^3 = 64 \iff x = 4 \)
\( S = S_1 + S_2 = \int_0^2 \big( x^2 - \frac{x^2}{8} \big) \, dx + \int_2^4 \big( \frac{8}{x} - \frac{x^2}{8} \big) \, dx \)
\( = 8\ln2 \)
Bấm
• \( \int_0^2 \frac{7x^2}{8} \, dx + \int_2^4 \big( \frac{8}{x} - \frac{x^2}{8} \big) \, dx = 5.545177 \)
• \( 8\ln2 = 5.545177\)
\(\Rightarrow\) Vậy chọn đáp án \(\boxed{\text{C}} \)