Lời giải
* \( e^{x-2} = 3 - x \Leftrightarrow x = 2 \) (đơn điệu)
\( S = S_1 + S_2 = \int_0^2 e^{x-2} \, dx + \int_2^3 (3 - x) \, dx \)
\(= e^{x-2} \bigg|_0^2 + ( 3x - \frac{x^2}{2}) \bigg|_2^3 \)
\( = \left( 1 - \frac{1}{e^2} \right) + \left( \frac{9}{2} - 4 \right) = \frac{3}{2} - \frac{1}{e^2} \) (đvdt)
Bấm
• \( \int_0^2 e^{x-2} \, dx + \int_2^3 (3 - x) \, dx = 1.364664\)
• \( \frac{3}{2} - \frac{1}{e^2} = 1.364664 \)
\(\Rightarrow\) Vậy chọn đáp án \(\boxed{\text{B}} \)