Lời giải
\(h'(x) = 2 \big( f'(x) - x \big) = 0 \iff \) hoặc \(x = -2\) hoăc \(x = 2\) hoặc \(x = 4 \)
\(\frac{1}{2} h'(x) = f'(x) - x\)
\(\frac{1}{2} \int_{-2}^4 h'(x) \, dx = \int_{-2}^4 \big( f'(x) - x \big) \, dx = S_1 - S_2 > 0\)
\(\implies \frac{1}{2} \big( h(4) - h(-2) \big) > 0 \implies h(4) > h(-2)\)
Suy ra: \(h(-2) < h(4) < h(2)\)
\(\Rightarrow\) Vậy chọn đáp án \(\boxed{\text{C}} \)