Lời giải
* \( (x - 1)^2 + (y - 3)^2 = 4 \Rightarrow (y - 3)^2 = 4 - (x - 1)^2 \)
\( \Leftrightarrow \left[
\begin{array}{l}
y - 3 = \sqrt{4 - (x - 1)^2}\\
y - 3 = - \sqrt{4 - (x - 1)^2}
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{l}
y = 3 + \sqrt{4 - (x - 1)^2} \\
y = 3 - \sqrt{4 - (x - 1)^2}
\end{array} \right.\)
\( S_1 = 2 \int_{-1}^2 \left( 3 + \sqrt{4 - (x - 1)^2} - 3 \right) \, dx = 2 \int_{-1}^2 \sqrt{4 - (x - 1)^2} \, dx \)
\( = 10,10963222 = \frac{8\pi}{3} + \sqrt{3} \)
\(( S_1 = 2S_3 = \dots) \)
\(\Rightarrow\) Vậy chọn đáp án \(\boxed{\text{B}} \)