Đáp án:
\( A(2+a, 2+a, 1-a) \in d_1 \),
\( B(-3+2b, 1+b, 4-3b) \in d_2 \).
\( \begin{cases} \vec{AB} = (2b-a-5, b-a-1, -3b+a+3) \perp \vec{u}_{d_1}=(1, 1, -1) \\ \vec{AB} = (2b-a-5, b-a-1, -3b+a+3) \perp \vec{u}_{d_2}= (2, 1, -3) \end{cases}\).
\(\Leftrightarrow \begin{cases} 2b-a-5 + b-a-1 + 3b-a-3) = 0 \\ 2(2b-a-5) + (b-a-1) - 3(-3b+a+3) = 0 \end{cases} \)
\(\Leftrightarrow \begin{cases} -3a + 6b = 9 \\ -6a + 14b = 20 \end{cases} \Leftrightarrow \begin{cases} a = -1 \\ b = 1 \end{cases} \).
\( A(1, 1, 2), \, B(-1, 2, 1) \Rightarrow \vec{AB} = (-2, 1, -1) \).
\( \Rightarrow \Delta : \frac{x-1}{-2} = \frac{y-1}{1} = \frac{z-2}{-1} \Rightarrow \boxed{B} \).