Đáp án:
- \( \Delta \subset P \), chứa \( d_1 \), \( \parallel d \):
\( \vec{n_P} =\left[ \begin{split} \vec{u_{d_1}} =(2, 1, -1) \\ \vec{u_d} = (1, 1, -1) \end{split} \right] = (0, 1, 1), \quad y + z - 1 = 0. \)
- \( \Delta \subset Q \), chứa \( d_2 \), \( \parallel d \):
\( \vec{n_Q} = \left[ \begin{split} \vec{u_{d_2}} =(-1, 1, 3) \\ \vec{u_d} =(1, 1, -1) \end{split} \right] = (-4, 2, -2), \quad 2x - y + z - 3 = 0. \)
- \( \Delta \): \( \begin{cases} y + z - 1 = 0, \\ 2x - y + z - 3 = 0 \end{cases} \text{ qua } A(0, -1, 2). \)
\( \Rightarrow \Delta \text{ qua } A(0, -1, 2) \text{ và } \Rightarrow \vec{u_\Delta} = (1, 1, -1). \) \( \Delta: \frac{x - 1}{1} = \frac{y + 1}{-1} = \frac{z - 1}{-1} \Rightarrow \boxed{B} \)