Đáp án:
- \( \begin{cases} \Delta \text{ cắt } d_1 \\ \Delta \| P \end{cases}\Rightarrow \Delta \subset Q \) chứa \( d_1 \), \( Q \perp P \).
\( \vec{n_Q} = \left[ \begin{split} \vec{u_{d_1}}=(2, 1, 2) \\ \vec{n_P}=(1, 2, 3) \end{split} \right] = (-1, -4, 3), \quad x + 4y - 3z = 0. \)
- \(\begin{cases} \Delta \text{ cắt } d_2 \\ \Delta \| P \end{cases} \Rightarrow \Delta \subset R \) chứa \( d_2 \), \( R \perp P \):
\( \vec{n_R} = \left[ \begin{split} \vec{u_{d_2}} = (-1, 3, 4) \\ \vec{n_P} = (1, 2, 3) \end{split} \right] = (1, 7, -5), \quad x + 7y - 5z = 0. \)
- \( \Delta \| P \Rightarrow \vec{u_\Delta} = \vec{n_P} = (1, 2, 3). \)
- Phương trình \( \Delta \) qua: \( \begin{cases}
x + 4y - 3z = 0, \\
x + 7y - 5z = 0
\end{cases} \Leftrightarrow \begin{cases} x=1 \\ y= 2 \\ x=3 \end{cases} \Rightarrow \boxed{D} \)
Cách 2
\( A(2 + 2a, 4 + a, 6 + 2a) \in d_1 \)
\( B(1 - b, 2 + 3b, 3 + 4b) \in d_2 \)
\( AB \| (P) \Rightarrow \overrightarrow{AB} = (-2a - b - 1, -a + 3b - 2, -2a + 4b - 3) \parallel \vec{n_P} = (1, 2, 3) \)
\(\Leftrightarrow \frac{-2a - b - 1}{1} = \frac{-a + 3b - 2}{2} = \frac{-2a + 4b - 3}{3}. \)
\( \begin{cases}
-3a - 5b = 0 \\
-4a - 7b = 0
\end{cases} \Leftrightarrow \begin{cases} a = 0 \\ b = 0 \end{cases} \Leftrightarrow \begin{cases} A(2, 9, 6) \\ B(1, 2, 3) \end{cases}. \)
\( \Rightarrow \overrightarrow{BA} = (1, 2, 3) \Rightarrow \boxed{D}\)