Đáp án:
\( A(1+a, -1+2a, 1+a) \in d_1 \)
\( B(-1+2b, 2+b, b) \in d_2 \).
- \( \overrightarrow{AB} = (-a+2b-2, -2a+b+3, -a+b-1) \parallel (P)\).
- \( \overrightarrow{AB} \perp \overrightarrow{n_P} = (1, 1, 1) \):
\( \Leftrightarrow -a + 2b - 2 - 2a + b + 3 - a + b - 1 = 0 \Leftrightarrow -4a + 4b = 0 \Leftrightarrow a = b \).
\( \overrightarrow{AB} = (a-2, -a+3, -1) \).
- \( AB = \sqrt{(a-2)^2 + (3-a)^2 + 1} = \sqrt{2a^2 - 10a + 14} \).
Min \( AB = \frac{\sqrt{6}}{2}, a = \frac{5}{2} \Rightarrow \boxed{B}\).