Đáp án:
\( N \in \Delta_1 \): \( N(2 - n, n, 1 + n) \).
\( D \in \Delta_2 \): \( D(2p, -1 + p, -6 - p) \).
M,N,D thẳng hàng \(\Leftrightarrow \begin{cases} \overrightarrow{MN} = (1 - n, n - 1, n + 3) \\ \overrightarrow{MD} = (2p - 1, p - 2, -4 - p) \end{cases} \)
\(\Leftrightarrow \begin{cases} \frac{1 - n}{2p - 1} = \frac{n - 1}{p - 2} \\ \frac{n - 1}{p - 2} = \frac{n + 3}{-4 - p} \end{cases} \Leftrightarrow p = 1, \quad n = 2 \Rightarrow N(0, 2, 3), \quad D(2, 0, -7) \)
\(\Rightarrow I = (1, 1, -2) \Rightarrow \boxed{B}. \)