Đáp án:
Nhắc: Đường thẳng \(\Delta\) qua điểm \(A\) có vector chỉ phương \(\vec{u}_\Delta\):
\( d(M, \Delta) = \frac{|[\vec{AM}, \vec{u}_\Delta]|}{|\vec{u}_\Delta|}. \)
\(d_1\) qua \(M_1(1, 1, 0)\), có \(\vec{u}_{d_1} = (0, 0, 1)\).
\(d_2\) qua \(M_2(2, 0, 1)\), có \(\vec{u}_{d_2} = (0, 1, 1)\).
\(I \in \Delta \Leftrightarrow I = (1 + t, t, 1 + t). \)
\( \vec{IM}_1 = ( - t, 1- t, -1 -t), \quad \vec{IM}_2 = (-1- t,- t, -t) \)
\( d(I, d_1) = d(I, d_2)\)
\(\Leftrightarrow \frac{|[\vec{IM}_1, \vec{u}_{d_1}]|}{|\vec{u}_{d_1}|} = \frac{|[\vec{IM}_2, \vec{u}_{d_2}]|}{|\vec{u}_{d_2}|} \Leftrightarrow \frac{\sqrt{(1 - t)^2 + t^2}}{1} = \frac{\sqrt{2(1 - t)^2 + t^2}}{\sqrt{2}} \Rightarrow t = 0. \)
\(\Leftrightarrow t=0 \Rightarrow I(1, 0, 1), \quad R = d(I, d_1) = 1 \Rightarrow \boxed{A}. \)